Reducing the Memory Requirement in Reverse
Mode Automatic Differentiation by Solving
TBR Flow Equations

Uwe Naumann

Mathematic and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA

Abstract. The fast computation of gradients in reverse mode Auto-
matic Differentiation (AD) requires the generation of adjoint versions
of every statement in the original code. Due to the resulting reversal of
the control flow certain intermediate values have to be made available
in reverse order to compute the local partial derivatives. This can be
achieved by storing these values or by recomputing them when they be-
come required. In any case one is interested in minimizing the size of this
set.

Following an extensive introduction of the “To-Be-Recorded” (TBR)
problem we will present flow equations for propagating the TBR status
of variables in the context of reverse mode AD of structured programs.

1 Introduction

The work presented here is a continuation of the results published in [5]. Our aim
is to motivate a more formalized view on the problem of generating adjoint code
using the reverse mode of AD [9] that requires a minimal amount of memory
space when following a “store all” taping strategy, which will be explained below.

We consider a single subroutine F' : [R® — IR™ for computing a vector
function y = F(x). The values of m dependent variables y;, j = 1,...,m,
are calculated from the n independent variables x;, i = 1,...,n. I represents
an implementation of the mathematical model for some underlying real-world
application and it will be referred to as the forward code. The forward code
is expected to be written in some high-level imperative programming language
such as C or Fortran. More generally, it should be possible to decompose F' into
a sequence of scalar assignments of the form

vj:goj(vk)k<j, j=1...,p+m, (1)

such that the result of every intrinsic function and elementary arithmetic oper-
ation is assigned to a unique intermediate variable v;, j = 1,...,p+ m. m out
of these intermediate variables are set to be dependent. Whenever some variable
v; depends directly on another variable v, we write k& < j. It is assumed that
the local partial derivatives

Op;
Cji = 8—1)‘3(%)1@« (2)

of the elemental functions ¢;, 7 = 1,...,p+ m, exist and that they are jointly
continuous in some open neighborhood of the current argument (vi)g<;. In this
case an augmented version of the forward code can be implemented that com-
putes F itself and the set of all local partial derivatives as defined in (2).

The reverse mode of AD (see for example Section 3.3 in [9]) uses these local
partial derivatives to compute adjoints

Ek:ZCjk~{)j, j:p,...,l—n. (3)
Jik=<j

“Transposed Jacobian matrix times vector” products x = F'(x)T .y are com-
puted by initializing the adjoints of the dependent variables y; = vp4;, J =
1,...,m. The Jacobian F(x) can be accumulated by reverse propagation of the
Cartesian basis vectors in IR™ at complexity O(m). In particular, gradients of
single dependent variables with respect to all independent variables can be ob-
tained at a computational cost that is a small multiple of the cost of running
the forward code (see cheap gradient principle in [9]).

Considering equation (3) we observe that in reverse mode AD the adjoints
of all intermediate variables are actually computed in reverse order, i.e. for j =
p,...,1 —n. This implies that the local partial derivatives c;; have to be made
available in reverse order as well. This can be ensured

1. by storing the arguments of all local partial derivatives on a so-called tape
before their values get overwritten during the execution of the augmented
forward code and by retrieving these values whenever required in the adjoint
code [5]

2. or by simply recomputing them “from scratch” [7] when they become re-
quired in the adjoint code.

Generally speaking, the arguments of all local partial derivatives have to be
recorded. We will use this term as a place holder for either 1. or 2. Obviously,
the former approach may lead to enormous memory requirements for large-scale
application programs whereas the latter results in a quadratic computational
complexity. Often a mixture of both strategies is employed to achieve reasonable
trade-offs between memory requirements and the number of floating-point oper-
ations. However, even the efficiency of these checkpointing schemes [8] depends
on the knowledge about whether some value is actually required or not.

2 TBR Problem

The generation of the adjoint model 1s done by associating adjoint components
v with every active variable v. In particular, both the independent variables
x and the dependent variables y are active. Here, the term variable should
be understood as a scalar component of some program variable that is actually
declared in the forward code. An intermediate variable v is active at a given point
within the program if 3z € x : # <* v and Jy €y : v <* y. Here, <* denotes the

transitive closure of the operator <, i.e. ¥ <* v if there exist vg, vy, ..., vg_1, Vg
such that x = vg < v1 < ... < vg_1 < v = v. In the following, we assume that
the information on the set of active variables is available at every single point in
the program. A variable that is not active is called passive.

We investigate reverse mode AD of structured programs [3, Section 10] by
concentrating on the following four different types of statements:

— s:=[v = f(u)] - scalar assignments with f : IR* — IR as they occur in most
imperative programming languages; this restriction helps to keep the nota-
tion simple; all results can be generalized for general (vector) assignments
f: IRF* — IR* as they exist for example in Fortran 95 [1];

— s:=[s1, s2] — cascades of statements;

— s := [if (c) then s; else s fi] — branches where the boolean value ¢
determines whether s; or so is executed;
— s := [while (¢) do s; done] — loops where ¢ determines if s; is executed

followed by another evaluation of c.

u will be considered as a set of scalar variables, i.e. we will write w € u whenever
the scalar variable w occurs on the right-hand-side of an assignment v = f(u).
¢ is the value of a scalar boolean function g : D — {true, false} over elements
of arbitrary data types, i.e. ¢ = g(v) and the values of the arguments of the g¢
determine the value of ¢ and therefore the control flow.

In order to generate a correct adjoint code one has to do the following:

1. The control flow of the forward code has to be reversed.
2. Adjoint versions of every single assignment have to be built.

The former can be achieved in various ways. An exhaustive discussion of these
issues is out of the scope of this paper. In the example presented in Section 3 we
have chosen the following approach:

— Loops s := [while (c¢) do s; done]| are reversed by counting the number ITER
of iterations performed when running the forward code and by executing the
adjoint of the loop body s; exactly ITER times.

— For branches s := [if (¢) then s; else s; fi] we push the values of all
arguments of ¢ onto the tape whenever they get overwritten during the
execution of the forward code. When running the adjoint code these values
are popped at the appropriate time to decide whether to execute the adjoint
version of s1 or so. If such an argument is overwritten inside s, or sy then its
value has to be retrieved before the execution of of the adjoint branch. This
i1s automatically the case if the overwriting takes place after the execution
of s in the forward code.

We do not claim this solution to be optimal. However, for structured programs
it 18 a simple method for ensuring a correct reversal of the control flow.

In this paper we will concentrate on the second crucial ingredient of an adjoint
code, namely the generation of adjoint versions for all assignments in the forward
code. Consider v = f(u) where u = {uy,us, ..., u,, } denotes the set of scalar

arguments of f. Reverse mode AD transforms this assignment into the set of
adjoint statements

1.

2.

af .
U =0 - u), 1=1,...,n¢.
Three types of values are required for evaluating them correctly:
args(f'(u)) — the arguments of the local partial derivatives %(u) for ¢ =
1. ny;
idxargs(u) — arguments of indices of array-type u;, 1 € {1,...,n¢};

3.

idxargs(v) — arguments of indices of v should v be an array element.

A more detailed characterization of args(f’(u)) has been given in [5] as follows:
The TBR status of w € u has to be activated if

1.
2.

w is a non-linear active argument, e.g. v = sin(w);

w 1S a passive argument in an active term, e.g. v = w - a where a is an active
variable;

w 18 the index of some active element of an array a which occurs non-linearly
on the right-hand-side, e.g. v = a(w + 1) - a(w);

w 1s the index of some passive element of an array p which occurs in an
active term, e.g. v = z(w) - @ where a is some active variable;

For a better understanding of this rule it 1s useful to notice the following com-
ments:

— The decision whether some individual element of an array is active is impos-

sible to make in general. Both static and dynamic array region analysis [10]
can help to compute some conservative estimate. Without it the activity of
one element implies the activity of the whole array.

3. actually describes a subset of idxargs(u). The correct value of the array
index is required for the adjoint as well as for restoring the original value
that enters the computation of the local partial derivative.

The indices of passive array elements are only required for restoring the
correct arguments of the local partial derivatives. No adjoints are associated
with passive variables.

For s := [v = f(u)] we define

TBR(s) = args(f’(u)) U idxargs(u) U idxargs(v).

Knowing how to compute TBR/(s) for all assignments of F' we are able to decide
whether the value of some variable has to be recorded. Such variables will be
referred to as “tbr-active”.

3

Example

Consider the following code fragment (original forward code in lower case on the
left-hand-side) which has been augmented by instructions for storing the tape

on the right (new statements in upper case). It can be wrapped into a subroutine
F computing new values for the elements of a vector x from the corresponding
input values.

forward code augmented forward code
i=0; j=10 i=0; j=10
ITERS=0
while (check(j)) do while (check(j)) do
ITERS=ITERS+1
if (max(i,j)>7) then if (max(i,j)>7) then
STORE(x(1))
x(1)=j+sin(x(1)) x(1)=j+sin(x(1))
else else
STORE(x(j))
x(j)=j*cos(x(3)) x(j)=j*cos(x(3))
fi fi
STORE(1i)
i=i+1 i=i+1
STORE(j)
j=3-1 j=3-1
done done

i and j are assumed to be integers. The control flow is determined by the
two boolean values ¢; := check(j) and c2 := max(i,j) > 7 where check is
some boolean function over the integers and max computes the maximum of two
numbers. STORE (w) puts the current value of the variable w onto the top of the
stack implementing the tape for variables of the same type as w.

Let us have a closer look at the augmented version of the forward code. The
integer variable ITER is introduced to count the number of iterations performed
by the while loop. Both the values of ¢ and j are required to generate the adjoint
version § of the if-statement s and therefore TBR(c2) = {i,j}. Notice, that
neither i nor j i1s overwritten inside s; or s3. Consequently, their values do not
have to be restored before the execution s. The fact that they are is a consequence
of both i and j being overwritten immediately after the if-statement in the
forward code.

For the assignment s, := [v; = fi(u;1)] = [x(1) = j + sin(x(1))] we observe
that

TBR(s1) = args(f](u1)) Uidxargs(u;) U idxargs(vy)

{x(Dyufitu{i} = {x(3),1i}.

Similarly,
TBR(s2) = args(f}(us)) Uidxargs(us) U idxargs(vs)
{x(3), 3t u{itu{it ={x(), 3}

for s := [v2 = f2(ua)] = [x(j) = j * sin(x(j))]. In both statements the TBR
status of the variable written is activated on the right-hand-side which results
in the corresponding STORE instructions preceding the statement itself. Notice,
that both i and j are stored as a result of being arguments of max(i,j) and as
array indices of x. Moreover, j is recorded as an element of args(f}(usz)).

We assume joint program reversal mode [9, Chapter 12] meaning that the
adjoint computation is performed immediately after the execution of the aug-
mented forward code. A possible implementation of the adjoint model is given by

adjoint code

while (ITERS>0) do
RESTORE(j)
RESTORE(i)
if (max(i,j)>7) then
RESTORE(x(i))
adj_x(i)=cos(x(i))*adj_x(i)
else
RESTORE(x(j))
adj_x(j)=-j*sin(x(j))*adj_x(j)
fi
ITERS=ITERS-1
done

RESTORE(w) puts the value from the top of the stack matching the data type of
w into w. The RESTORE statement is always executed before the adjoint version
of the statement in front of which the matching STORE statement was performed
in the augmented forward code. In certain situations it can be advantageous to
store the result of an assignment instead of its arguments (see [5]).

Given values for x and adj_x the program consisting of the augmented for-
ward code followed by the adjoint code computes the “transposed Jacobian ma-
trix times adjoint vector” product

adjx = F'(x)7 - adjx.

Alternatively, we might have recomputed the values of i, j, x(i), and x(j)
which would have lead to repeated executions of the forward code within the
adjoint section while not requiring a tape.

4 TBR Status Flow Equations

In analogy to the approach taken in [3, Section 10] we will consider the following
sets:

— In,(s) — variables having property p before the execution of a statement s;

— Out,(s) — variables having property p after the execution of s;
— Gen,(s) — variables gaining property p as the result of executing s;
— Kill, (s) — variables loosing property p as the result of executing s;

In particular, we are interested in the case p = tbr (tbr meaning “has fo be
recorded”), i.e. in Ingpr(s), Outsp,r(s), Gengpr(s), and Killy, (s).

The decision to be made is whether the value of a variable v overwritten by
some assignment s := [v = f(u)] is required for the evaluation of the adjoint
program. If so, it has to be recorded. Below we consider assignments and basic
blocks, cascades of statements, branches, and loops — each of them interpreted
as a single statement s — under two aspects:

1. Which variables have to be recorded before the execution of s (for assign-
ments only)? Under the restriction to scalar assignments the question is
whether the value of the variable on the left-hand-side should be recorded
or not.

2. The TBR status of which variables is active after the execution of s (for all
statements)?

Assignments. For scalar assignments s := [v = f(u)] the set Kill;p,(s) is either
empty or 1t contains the single element v. The latter is the case if the TBR status
of v 1s activated before the execution of s or by s itself. Thus,

Kill;pr(s) = (Inger(s) UTBR(s)) Nv (4)

is exactly the set of values that would have to be saved before the execution
of s as part of the augmented forward code if we were following a “store all”
strategy. For sets containing a single element v only we write v instead of {v}.
Intuitively, we can state that a variable v belongs to Genyp,(s) if it is in TBR(s)
but neither in Ing,(s) nor in Killy,(s), i.e.

Gengpr (s) = TBR(s) \ Ingpr () \ Killp, (s).
Which can be simplified to get
Gengpr(s) = TBR(s) \ Ingpr(s) \ v. (5)

Sequences of set differences are evaluated from left to right. Notice, that this
operation is not associative. Both the expressions for Killy, (s) and for Gengp, (s)
are required for the resolution of

Outepr(s) = Gengpr (s) U (Ingpr (s) \ Killgs, (s)) (6)

This standard data flow equation (see for example [3]) says that a variable is tbr-
active after the execution of a statement s if its TBR status became activated by
s or if it was tbr-active before s and was not made tbr-passive by s. Substituting
(4) and (5) in equation (6) results in

Outspr (s) = (TBR(s) UIngr(s)) \ v. (7)

Under the restrictions imposed by us assignments s are the only statements for

which we are actually interested in Killy, (s). For the remaining types of state-

ments we need to be able to compute Outyp(s) from Ing,(s). Both Geng,(s)

and Kills, (s) can be computed recursively from the underlying assignments.
Equation (7) can be generalized to become

Outy,(s)=) [TBRu)\| |J v | U\ | |J w] ©®

i=1,...,0 Jj=t,...,1 i=1,...,1

for cascades of [assignments, i.e. for basic blocks s := [s;,i = 1,...,l] where
si:=[vi = fi(wy)] and i = 1, Assuming that Ins,(s) is known equation (8)
allows us to compute Outyp,(s) using structural information on all assignments
which is readily available.

Cascades of Statements. The standard data flow equations apply for cascades
of statements s := [s1, s3], i.e. Ingpr(51) = Ingpr(5), Ingpr(s2) = Outyp,(s1), and
Outspr (s) = Outpr(s2). Outyp,r(s5) = Gengpr(s;) U (Inger (i) \ Killip (s;)) for
1= 1,2 leads to

Outepr(s) = Gengpr(s2) U (Gengpy (1) U (Ingpr (5) \ Killisr (s1))) \ Killger (s2)

which results in the requirement for explicit expressions for Gemngp,(s;) and
Killpr(s;) (i = 1,2). For example, if both s; and sz are scalar assignments then
(4) and (5) can be used to derive more specific expressions. In fact, equation (8)
was derived this way.

Branches Static TBR analysis is conservative, i.e. for a conditional branch
statement s := [if (c¢) then s; else s; f£i] we have

Gengpr(s) = Gengr(s1) U Gengpy (s2)
Killtbr(s) = Killtbr(sl) N Killtbr(SQ)
Outepr(s) = Outepr(s1) U Outyp,(s2)

Loops. Consider a loop s := [while (¢) do s; done] where s; is a cascade of
statements as in Section 4. We are interested in two types of information:

1. Knowing Ing,(s) we would like to compute Outyp,(s).
2. For every assignment s’ € s; we need to determine Killp, (s').

Both 1. and 2. should be obtained with a minimal computational effort. Below we
show that for the TBR status information within structured programs at most
two traversals of the code inside loops are required. We will specify the index
of the traversal as a superscript, i.e. for example Out,-(s1)! denotes the set of
thr-active variables after a single analysis of s;. Furthermore, we assume that
the control flow is reversed by counting the number of loop iterations performed
by the forward code as in the example in Section 1.

Proposition 1 Outy,(s) = Outyr(s1)!.
PrOOF. Under what circumstances is a variable v in Outp,(s)?

1. If it is in Ingp,(s) and if it is not overwritten inside sy, i.e. if v € Inygpr(s1) A
A €51 :v € Kill,, (s')* or

2. if it becomes tbr-active as a result of executing some assignment s’ € s; and
if it is not overwritten by any assignment s” € s; such that s > &', i.e. if
3s” € 51 : 5" € Gengr(s") A A >s" €s;:v € Killy, (s').

We use the notation s” > s’ to indicate that the statement s’ is executed before
s when running the forward code. Obviously, both 1. and 2. can be checked by
performing a single analysis of the loop body. B A major consequence is that in
order to determine Ing, (s) for some statement within the forward code we have
to analyze each statement preceding s only once, even if it is part of a (possibly
nested) loop.

In general, for s’ := [v = f(u)] we will know whether to record v only after
the second traversal of s;.

Proposition 2 Vs’ € s1 : Killy, (s') = Killy,(s')?
ProoF. Consider s’ € s; where s’ := [v = f(u)].

1. If v is thr-active during the first traversal, i.e. if

(v € Ingpr(s1) V3" < 5" v € Gengpr (5'))A
(ﬂS/// . (8// < 8/// < 8/ Av E Killtbr(S///))),

then the decision can be made during the first traversal.
2. If v is tbhr-passive
(a) because there exists an assignment s” < s’ which overwrites v and As
s < " Av € Geng(s") then the decision can be made during the
first traversal;
(b) because v is not in Ing,(s) then due to Ingp,(s1) = Inge, (5)UOUb s, (51)1
we need a second 1teration to cover the case v € Outtbr(sl)l.

",

5 Summary, Preliminary Results, Outlook

The generation of adjoint code is based on the reversal of the control flow of the
forward code. Adjoint versions of every single assignment contained within the
latter have to be generated. The reversed control flow leads to the requirement
to access the values of certain intermediate variables in reverse order. In general,
due to intermediate variables being overwritten in the forward code, this can
only be ensured by storing the corresponding values or recomputing them.

In this paper we have presented some flow equations for propagating the
information on whether the value of an intermediate variable has to be recorded,

i.e. whether the current value is required for the generation of a correct adjoint
code. Implementations of these ideas showed promising reductions of the memory
requirement when following a pure “store all” strategy In [5] the ideas presented
in this paper were applied to a large industrial thermal-hydraulic code developed
at EDF-DER in France (70000 lines, 500 sub-programs, 1000 parameters). Using
the TBR analysis the tape size could be decreased by a factor of 5. The size of
the standard tape generated by Odyssée version 1.7 [6]: is 213920 - 10° scalar
values (or 1711360 MBytes if every value is a double), whereas the optimized
tape contains only 40486 - 10° scalar values (or 323888 MBytes).

Our next step will be the generalization of the results presented here to
interprocedural TBR, analysis and general unstructured programs. In collabora-
tion with colleagues working at INRIA Sophia-Antipolis, France, these ideas are
currently being implemented in TAPENADE [2] - the successor of Odyssée. A
general discussion of optimizing the memory requirements in reverse mode AD
is in work.

Acknowledgement

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. Fortran standard. International Organization for Standardization, 1 (1997), 2
(2000), 3 (1999)(ISO/IEC 1539).

2. http://www-sop. inria.fr/tropics/. URL.

3. A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

4. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Auto-
matic Differentiation of Algorithms - From Simulation to Optimization, to appear
in Springer LNCS, New York, 2001.

5. C. Faure and U. Naumann. The taping problem in Automatic Differentiation. In
(]

6. C. Faure and Y. Papegay. Odyssée user’s guide. version 1.7. Technical Report
0224, INRIA, September 1998.

7. R. Giering and T. Kaminski. Towards an optimal trade-off between recalculation
and taping in reverse mode ad. In [4]. to appear in Springer LNCS, 2001.

8. A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in
reverse Automatic Differentiation. Optimization Methods and Software, (1):35-54,
1992.

9. A. Griewank. PFvaluating Derivatives. Principles and Techniques of Algorithmaic
Differentiation. STAM, Philadelphia, April 2000.

10. R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. In Proceedings of the ACM SIGPLAN’00 Conference on
Programming Language Design and Implementation. ACM, 2000.

